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ABSTRACT

The ionosphere is considered as a dissipative medium in which
the random thermal motions of the charged particles act as a source of
thermal radiation. Attention has been focused on the electrons colliding
with ions and neutral particles in the ionosphere. A method of analysis
has been developed with the aid of the Maxwell and Langevin equations
based on a linear, macroscopic, fluctuating electromagnetic field theory.
The spectral density of the random-current source function is derived in
terms of the conductivity tensor of the ionosphere.

The ionosphere 1s divided into a large number of incremental
volume elements, each containing an ionized medium which represents an
anisotropic elementary radiating system, characterized by the spectral
density of the source function. The radiation characteristic of the
radiating system observed at a point located outside of the source
region is obtained with the aid of the potential functions which relate
the thermal electromagnetic fields at the observation point to their
source function. It is observed that when the frequency of radiation
is such that YZ + 22 = 3, where Y = wt/w and Z = v/w, the radiating

system loses 1ts anisotropic feature. @ and v are the cyclotron and

collision frequencies of the electrons, respectively. Based on the
superposition principle, general expressions have been derived for
W(f,VS), the thermal noise power generated per unit bandwidth from any

given source region VS of the ionosphere, and for Po(f,VS), the

available thermal noise power per unit bandwidth at a receiving
antenna. These expressions are valid for most regions of interest in
the ionosphere where the electron collision process plays a major role
in the thermal radiation and are not limited in frequency range.

-iii-
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THERMAL RADTATION FROM THE IONOSPHERE

I. INTRODUCTION

It is well known that because the ionosphere acts as an absorber
of radio waves, it can also act as an emitter of thermal radio noise.
It has been conclusively demonstrated by various workersl’?’3’4 that
the thermal emission from the D-region can, under favorable conditions.
be observed with a dipole antenna. For example, Pawsey et al.l have
identified and measured the thermal radiation from the ionosphere in
the vieinity of 2 mc/sec in the temperate latitude.

It appears that usually the thermal radiation has been neglected
because its level is exceedingly low as illustrated by Pawsey et al.
and it does not constitute an appreciable source of interference in
radio communication. However, the noise radiated from a plasma (e.g.,
the ionosphere) is not necessarily a detrimental effect in all cases,
as it is in communication, since if the spectral distribution of the
emitted energy is characteristic of the plasma properties, a measurement
of radiation provides specific information on the plasma. For example,
knowledge of the radiated power gives a measure of the electron temper-
ature in the plasma and this has been used as a powerful diagnostic
technique.

For a steady-state plasma a macroscopic radiative transfer concept
can be applied without detailed knowledge of the atomic processes and the
emission sﬁectrum can be determined from the electromagnetic wave
absorption; transmission and reflection properties of the plasma. These
determinations are. in general, complicated by the nonuniformity and

geometrical configuration of the emitting plasma.
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In view of the fact that a current survey of the literature shows
that no detailed information with regard to the mechanism of generation
of ionospheric thermal radiation is available, it is the purpose of the
present report to study this phenomenon in the hope that it will serve
as a useful step toward an understanding of the fundamental process.

Tt is well known that the thermal radiation from dissipative
bodies is due to the random thermal motion of the charges in the body.
If the body is at a uniform temperature, one approach that may be used
for studying radiation may be called the integral approach. The body
as a whole is considered to be nonradiating and the power that is
absorbed from its surroundings, which is assumed to be at the temperature
of the body, can be computed. This power is set equal to the power

radiated by the body. In this approach no attempt is made to determine

the noise current fluctuations that are the cause of the thermal radiation.

In those cases in which the temperature of the body is nonuniform this
approach fails.

Another approach, which may be called the "Nyquist source treat-
ment"55@7, focuses attention upon the sources of the radiation and deter-
mines their relevant statistical properties. Once these are known, the
determination of the radiation is conceptually a simple problem, although
mathematical difficulties usually arise. A step toward the determination
of the current fluctuation in a linear, dissipative medium has been taken
by Rytovs- He considered ordinary conducting homogeneous media and
showed that by postulating some correlations for the current fluctuation
in such a media a correct description of the thermal electromagnetic
field can be obtained. Haus® has been able to determine the correlations
of the current fluctuation in all uniform linear dissipative media.

7

Vanwormhoudt and Haus’ have generalized these results to nonuniform media.
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In the present study, the "Nyquist source treatment" is adopted
and the ionosphere is considered as an anisotropic dissipative medium
in which the random thermal motions of the charged particles act as a
source of the thermal radiation. It is further postulated that in the
ionosphere a linear constitutive local relation exists between the driven

Y
a-c conduction current density J_. and an applied a-c electric field

d

-~
intensity E of the form

7, @P = 7D T @) , (1)

o
where o is the conductivity tensor of the ionosphere, and a function
-
of the angular frequency w and position variable r which characterize
the medium under consideration. A small-signal analysis is made

throughout the present paper.

II. DERIVATION OF THE CONDUCTIVITY TENSOR

For a macroscopic analysis the Langevin equation can be used
effectively to describe the motion of an electron, and it can be
expressed as follows:

- Y

Y S A
m—+mvv = e[E+vxB] , (2)

ot

- e .
where B(r) is the static geomagnetic field, v(r) is the average
electronic collision frequency with ions and neutral particles, e,

-
m and v are the electronic charge taken as a negative value, mass
and velocity respectively.

-
On the other hand the convection current density J is related

.
to the velocity v by




- -
J = N ev , (3)

whers N () is the electron number density.
Assuming the time harmonic variation e‘wC for the quantities

S
of interest, upon elimination of v from Egs. 2 and 3 the following

relationship is established:

UT+3 GxY) = -joe XE , (1)
where

W Noe2

X = _E 5 (_D2 = B
w2 p m eo

> éﬁ _ u% -e |f

Y = — |, Y _— R
maw w maw
w 2 2

in which ab and W are the plasma and gyrofrequencies of the electrons,

respectively, and €5 is the dielectric constant of vacuum.

. . = .
In a three-dimensional space any vector F can be written as

3

~ FY

P ) T, (6)
o=1

N AN N
where the unit vectors U, ou, and u, form a complete orthogonal
set of basic vectors for the space and Fa is the component of the
vector 1n the direction of ;a' At the same time, the vector ? may

also be expressed as a column matrix, denoted by F as

[Rea]
]

{FOL} a = 1,2, 5 . (7)

i
=
o
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The vector Eq. 4 may be conveniently expressed in the following matrix

form:
z2J = E (8)
or equivalently in tensor notation as
7.3 =%, (9)

where the resistivity matrix 2 is defined as
7 = {7(16} 2 a} g = l) 2} 5 2 (lo)

with its elements being given by

711 722 733 w e X ?
- Ys
Yiz2 = T 751 TG e X 7’
o
713 A we X
o
and
- Yl
Yea 7 " 732 T T X (21)
o
and with its determinant jzf given by
ly] = —& = [¥% - v?] (12)
(a>eo X)
in which
2 _ 2 2 2
Y5 o= YT Y+ YD . (13)

In view of the fact that lzl can be zero only for a special situation

where v = 0 and w = Wy occur simultaneously. Since v = 0 is not of

interest to the present study, lvl can be considered to possess an
inverse, which iz cenoted by ¢ and is referred to e the "cenductivity

. 1 .
motrix", i.e.,
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la

r = I (1)

where I is the unit matrix. Consequently, from Eq. 8 and Eq. 14, J

can be expressed in terms of E explicitly as

d = gk (15)
or in a tensor notation as
P o Y
J = o .+E . (16)

It should be noted that the components of the tensors @ and.? do
depend upon the particular choice of the coordinate system. 1In-the
present report, the spherical coordinate system is employed because
it appears to be the most convenient one to use for the configuration
of the region under investigation.

It is well known that the geomagnetic field B can be approxi-
mated by a dipole field which is induced by a uniformly magnetized

spherical earth, and may be expressed® as

— 8 N
B = M; v <03F29) , (17)

7

where the space variables r and 6 denote, respectively, the radial
and polar angular coordinates of the geomagnetic spherical coordinate
system with its origin located at the center of the earth, and the
constants M and & are the magnetization and the radius of the earth
respectively.

If the unit vectors Gl, 32 and 33 are taken as the basic
vectors in the spherical coordinate system (r, 6, @), then the
indices 1, 2 and 3 can be made to correspond to the coordinate
variables r, 8 and ¢ respectively. Thus Fl, F2 and F3 represent

the r-,6- and @-components of the vector f.
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By adopting the model of the geomagnetic field described by

Eg. 17 it is not difficult to see that the components of the vector

?, defined in Eq. 5, are given by

Yl = 2G cos 6 , Y2 = G sin 9 and Y, = o ,

where
_ - M a \°
G = (wi;> 3 ( r.>

and the components of Y and o are given as follows:

= = = —jg—
711 722 7aa W e X ’
Tiz2 T "7z T o

= . - Gsinoe
713 731 w eo X ?

- 2G cos 6

Yoz T " 73 T we X

o

and

O-aB = :DC(]B 3 a,ﬁ = l’ 2, 5 5
where

D = jumo — X
u(u® - v®)

and

Y2 = G2(l + 3 cos® 0)

(18)

(19)

(21)

(22)

(23)
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with
c., = (z2 - 1 + 42 cos® ) + joz
C = (z2 - 1+ G® sin® 9) + j2z
22
_ 2 .
Coe = (2% -1) + joz
C = C = 2G2 sin 6 cos 8
12 21
c = - = - (Z+j) Gsine
13 31
C = - C = 2(z+ j) Gcos 6 . (24)
23 32

ITI. NOISE POWER RADIATED FROM THE IONOSPHERE

A body with a nonuniform temperature distribution is not in
thermodynamic equilibrium. However, in those cases in which the
distribution function of charge carriers deviates only slightly
from the equilibrium distribution (so as to produce heat and current
flow), and this includes all cases for which a temperature can be
reasonably defined, it would be expected that the radiated noise
power could still be computed as the superposition of the noise power
radiated from the various volume elements of the body. In this case
each element at a particular temperature radiates the same noise
power it would radiate at equilibrium at the same temperature. Such
an analysis calls for an approach to the fluctuation problem that
considers each differential volume element separately as an absorber
and emitter of noise power. It calls for the introduction of a
source term into Maxwell's equations analogous to the source term

of the Langevin equation in the theory of Brownian motion.
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Although Maxwell's equations and the constitutive relation
are sufficient to solve most electromagnetic problems, they are
insufficient for noise studies. The current density derived from
the constitutive relation represents only the current driven by
the electromagnetic fields. Besides this driven current, the
current density fluctuation caused by the random motion of the
charge must be considered. This can be taken into account by
introducing into Maxwell's equations a random driving current
density distribution which is independent of the electromagnetic

fields, i.e.,

> h
Vxe =-p = (25)
o Jt
and
-
> de |, >
Vxh = € —+1i , (26)
° ot
> A 3 . 13 .
where e and h are the time-dependent electric and magnetic fields,

ol

respectively, and is the current density, H, is the permegbility of
vacuo. The current density'? in Eq. 26 consists of two parts. First
of all there is the "driven" componentbi:d that is produced by the
electric field'z and is related to 2 by Eq. 15. The spontaneous noise
fluctuations of the field at thermal equilibrium can be taken into
account by another current component of'? in Eq. 26, the source current
density K(t;?), a statistical gquantity which is a stationary function

of time.

3.1 The Dyadic Spectral Density of Current Source Functions

In the study of problems involving radiation of noise power,
it is convenient to introduce Fourier transformations in time of all

field quantities in Egs. 25 and 26. In the present case all random
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time functions are stationary and, strictly speaking, they do no
possess Fourier transformations. However, this difficulty may be
overcome by constructing a periodic substitute function®:® according

to the definition

A A - A T
F(t, r, T) = F(t, r) , for - 5 < t <

ol

and

AN A A A
F(t + n?, r, T) = F(t, r, T) . (27)
These substitute functions have Fourier transformations of the form

T/2
A - =
F(t, r, T)

A s
F(w, r, T) = e Jwt

=

at . (28)
-(1/2)

In the limit as T — «. the substitute functions are indistinguishable
from their originals. The spectral density of any noise process can
be obtained directly from the ensemble average of products of these
Fourier components. Thus, the dyadic spectral density of % is given

by

4 4 QA . T A, A 2 A
S f(a% r, r') = %1ﬂ>w-§;‘<F(w, r, T) F¥(w, ', T)>avg R

(29)

where the symbol ¥ denotes the complex conjugate.

It should be noted that the spectral analysis of the periodic
substitute function leads to a discrete spectrum extending over
negative, as well as positive, frequencies. With lines at frequency

interval Af = (l/T) the expression

Y A A A =
< 2F((.l), r, T) F*((D, r', T)>an = LygAf 8 —F3((,0, r, I") (30)
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may be identified in the limit of large T as "the mean-square fluctuation
Py
of F in the frequency interval Af". Furthermore, for a stationary time

N
function F, (see Reference 9),

A, A 2 A
<Flw, 7, T) FHw', T, T)>évg = 0 , o ¥ o . (31)

L
2n
Precisely this kind of treatment must be kept in mind in appliying
the formal expansion of the Fourier integral and using the spectral
amplitude densities in the study of electromagnetic fluctustion, on
which the present report is based.

As a matter of convenience, for a particular physical variable,
the lower case letter is used for the stationary time function and for
its periodic substitute function, while the capital letter is usea for
its Fourier transform, in the following discussion. It is obvious, from

Egs. 25 and 26, with the aid of Eq. 16 that the Fourier amplitudes of the

periodic substitute functions are related in the following menner:

- -
VxE = -jou H (32)
and
[AY
o

2 S D D
VxH = jwe E+c-E+K . (33)

o

Suppose that a region of the ionosphere under study is divided
into a large number of sufficiently small elementary volume elements
such that within each one of these elementary volumes the medium may
reasonably be assumed to be uniform at a certain temperature To.
Strictly speaking these elementary volume elements should be made to
approach zero. On the other hand, they have to be kept large enough
to contain a2 large number of charge carriers in order that statistical

arguments mey be applied. A tensor-conductivity description of the

medium os given by Eg. 16 is possible only because the current in an
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elementary volume depends upon the electric field in the same volume,
but not upon its derivatives, that is, upon the value of the electric
field in the neighboring elementary volumes. In view of this fact,

it is quite reasonable to expect that the source currents caused by
the random motion of the charge carriers in two neighboring elementary
volumes are uncorrelated. In other words, if ? and ?' denote the
points belonging to two different elementary volumes, then i(w, )

and ﬁ(w,'?') are not correlated and the dyadic spectral density of

AN
K has the form

3w, 7, ) = 8F -7 Vo 1) (54)

Y
where 8(r - r') is the veual Dirac delto tfunetion.

On the other hand, an elementary volume element may be conaideros

as a linear network containing a noise source in thermal eguilibrium
and the technique developed in the theory of linear noise network6J7,
which makes use of the generalized Nyquist theorem, can be applied.
Using the concept of a linear network, for example, Haus® has obtained

] . [Y A
a simple expression for w(w, r) as follows:

kT (r) R
Wo P = 2 a5 T 0, M, (55)

where k is the Boltzmann constant and the symbol dagger (1) indicates
the complex-conjugate transpose of the conductivity matrix %. I8 the
average volume density of thermal energy t(r) in joules per m® is
introduced, defined as the ratio of the amount of thermal energy

generated within an elementary volume AV to the volume AV, then from

Egs. 34 and 35 one has

i

B0, ) = HE (5w, D) +5 T (o, D] (36)

on




.
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and from Eq. 30

S, = - n - [AY -
<2, T) B¥w, 2>, = 28 7(x) [olo, ) +5 1 (0, DI,
(1)
which may be given alternatively in its component form with the aid

of Eq. 24 as follows (see the appendix for the details):

<2k (w, r) Kg(w, r)>avg = 1(r) AfLaB(w, r) , (38)
where
L (o, r) = bLoe (———)-(—Z—>[IZ +gm_ o],
aB o ] o+ 72 ap ap
a}B = l; 2: 3 5] (59)
with
_ 1 2 2 2 2 2 2 2
[ll_m[(l+z)(1+z + ¥2) + (z8 + Y2 -3) L4GZ cos® 8] ,
_ 1 2 2 2 2 2 2 .2
le = T [(1+ 281+ 22+ Y3 + (2% + Y% -3) G sin® 0] ,

_ 1 - 2y 2 2y 3
las = grrzy LA+ 2@+ 25+ Y],

1 2 2 > .
= = + - 2
l12 £2l -Q—KY,—Zy [(Z Y 5) G= sin 6] »
113 - 131 - 123 = 232 =0,
My T Mop T Mgy T M, TOFy T °
m = -m = L [2(1 + z®) G sin 6]
13 31 (Y, 2) ?
n = -m = =L _[4(1 + 23 G cos 6]
23 32 (Y, Z)
and
a(y,z) = (Y& + 22 - 1)2 + hz® . (40)

It is observed that Y = 0 when G = O. In this case,

£a5=11f(x=Band laﬁ

less of whether @ = 8 or a Xk B.

=0 if a ¥ B, while becomes zero regard-

m, B
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the tensor {HJS} appearing in Eq. 38 becomes a scalar and the medium
becomes isotropic. This is perfectly reasonable since when G = O the
geomagnetic field is completely absent.

It is also interesting to note that for the case
Y2+ 2% = 3 (k1)

&13 again becomes either equal to unity or to zero according to

whether & = B or @ X B and

m = -m = G sin 6
13 31

ol

and

m, = -m,, = G cos 6. (42)

5.2 Time Average Thermal Noise Power Radiated

It is not difficult to see that from Egs. 25 and 26 the following

energy conservation relation can be obtained:

> N 2 T
. = . . - — | = + =
v -.p e - 1- (3 €0 5 M h > , (43)
- - -
which is the familiar "Poynting theorem'", where p = e x h is the

Poynting vector representing power flow density. The first term on
the right-hand side of Eq. 43 represents the joule heat losses per
unit volume in the medium and the other term represents the rate of
change of the stored electromagnetic energy density.

For the periodic field, the average time rate of change of

stored energy is zero, so that

.Y = - -
V.-p =V-p = -%°-3, ()

where the bar denotes the time average of the quantity. Using the

fact that

® L
=l
,_J




.
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and

a QD

P = %Re [E x H¥] (45)
the total average power radiated from a system of a current is given

'bylo

Mol

w=f§-d§=-lRefCE\-'f*)dv. (46)
v

Thus radiation can be calculated either by integrating the normal
component of the Poynting vector over a closed surface S including
all sources or by integrating the power expended per unit volume over
the current distribution. In the present discussion the latter
approach is taken.

Keeping in mind that the concern here is with the random
current distribution and since the time average power radiated per

unit volume, w(w, r), is given by
- S AN
wlw, ) = % Re [K* -+ E] , watts/m> (u7)

S AN
in which K is the cause and E is its effect, and with the aid of
Eg. 9, w(w, 55 becomes

w(w,}\) = £ Re [R* - (I;~E] = %Re [I_{+11_{] . (48)

ol

The substitution of Eg. 20 into Eq. 48 yields (see the appendix for

the details)

_ Z * * *
wlw, r) = 2we X [k K* + K KX + K KX] . (49)

On the other hand, with the aid of Egs. 38 and 39, the thermal noise
power generated per unit volume per unit bandwidth, wb(f, r), may be

given as
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(£, 1) = 2 Ny o+ v a] (50
Wotts )7 l{%}(W + ZZ} 11 22 * fagl 50)

where 111’ £, and 233 are given in Eq. LO.

It is interesting to observe that W given in Eq. %0 cdoes not
depend explicitly upon the electron number density NO since 1t does not
contain the parameter X. Furthermore, the radiated thermal noise power
consists of three terms; the term associated with El, with 12 and with
13, each representing the contribution from the current fluctuation in
three directions along the coordinate axes, namely, in the r-, 6- and
p-directions respectively. The fact that no term containing the
parameter laB’ with a X B, appears in Eq. 50 suggests that no correlation
between the components of source currents Ka and KB contribute to the
thermal radiation. On the other hand, vhen Y = O, 111 = 122 = 233 =1,
which suggests that the contributions from the three different directions
are equal, and for a system with three degrees of freedom the thermal
noise power radiated is proportional to BkTO, which is reasonable.

Having obtained the expression for wo(f, ?), the evaluation
of the thermsl noise power radiated from any region VS of interest in
the ionosphere is a relatively simple matter if the way in which the
temperature TO and the parameters Y and Z depend upon position is known.

For example, if the stratified model of the jonospherel? is
considered, and it is assumed that the electron number density'No,
the electron temperature TO and the collision frequency v all depend
only upcon the altitude h, or r = a + h, but not upon the polar angle 6

/
or azimuthal angle ¢, then the parameters X and Z are functions of h,
or of r, whereas the parameter Y, being defined in terms of the earth's

magnetic field, in general depends upon the altitude h as well as the

polar angle §. Therefore, the time average thermal noise power W(f, VS)
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.

per unit bandwidth radiated from a region Vs(ro <r< r.s 8, <o < 6,
and ¢ < ¢ < @l) can be given with the aid of Egs. 40 and 50 as follows

(see the appendix for the details):

kT _z%r®
wig, v) = (o - 9)) k/q ( \> ¢ (z, 8, 0)a , (51

1+ 72

where

u

t (z, 90, 61) = [cos 90 - cos 91 + 2(z% + 1) L/' e (z, u) du]
L

A

u
1
(52)
and
au® + b
® (Z, u) = (53)
cut + gu® + g
with
u = cos 8 |, a = 362 , b = G2+ 72 +1 ,
c = 96* , a = 662(¢%+ 22 -1) ,
g = G*+26%(z% - 1) + (22 +1)% . (54)

IV. OBSERVATION OF THERMAL RADTIATION FROM THE IONOSPHERE

The rigorous determination of the radiation intensity within
the emitting region of the ionosphere must be based on the study of
the electromagnetic wave propagation in an anisotropic absorbing
medium, in which each volume element can act as an emitter as well
as an absorber of the thermal radiation. However, this problem is
not discussed in the present report.

Nevertheless, it is of interest and of a considerable practical

importance to know about the characteristics of noise power received
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from the ionospheric thermal radiation at a detecting antenna located
outside of the source region. For examplelJ2:8:4, many experimental
observations have been made with an antenna located on the surface of
the earth; it may also be on the ground or on the sea.

In view of the fact that the relation of the radiation fields
to their sources is most readily found in terms of potential functions,
and since the information with regard to some statistical properties

of the random source current function XK is available from Section 117,

the retarded vector potential function is introduced here and expressed

in complex form as ﬁ(w, Xa) erm, with
. 1
N Mo 'ﬁ(w, x&) e_JkoR(xa’ xa)
= —_— 1]
Alw, x4) T f R %)) av' (55)
Vv
s

where X and x& denote the coordinates of the observation point and
the source point respectively, and R(Xa’ x&) is the distance between
them. Vs(x&) is the volume of the source region under investigation
and ko is the wave number. In the present discussion X, is taken in
the air and x& is taken in the ionosphere.

It should be observed that Egq. 55 signifies superposition of

the solutions of the inhomogeneous wave equation

S D
V2R o+ K2 o= - X, (56)

where ks = dFuO€O and corresponds to a source at the point x& given

A
by K = 06(xa - x&), with &(

Xq - x&) being the usual Dirac delta function.
On the other hand the retarded scalar potential function @(w, Xa> is
related to the vector potential by'©
V. A+ joued = 0 (57)
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which expresses the idea of conservation of charge. It should be noted
that Eq. 57 is valid in free space (air) whereas it is only an approxi-
mation in a region of the conducting medium in which lc/jweol << 1.

It is well known that the electromagnetic fields at an observation

point X taken in air, can be derived from these potential functions
by
2 R
E = -y © - jwA (58)
and
2 N
Ho= =vxh , (59)
Mo

where the spatial differential operator V should be understood as VX 5
o
which only operates on the function of X The utilization of potential
functions is particularly convenient because space differentiation V,
—
under the sign of the volume integration, does not touch K(w, X&) and
N 2

thereby the field intensities E and H in the same manner do not contain

pa
derivatives of K.

The substitution of Egs. 55 and 57 into Egs. 58 and 59 gives the

following expression (see the appendix for the details):

SRE R .22 e O gy (60)

- R
and
A Y A ld Jk_R
H I}‘/ (KxR)——+—£1e ° av (61)
Lp 2 3 |
v R R

where the vector R is directed from the source point x& to the observation

point X with its magnitude being the distance between these points.
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It is of interest to note that in Eqs. €60 and 61, every volume
element dV' of the medium gives the same kind of field as an electric

dipole at the point of observation x , and the terms which, with increasing

a
R, decrease faster than 1/R correspond to the quasi-stationary field
parts of the elementary dipoles, while the terms decreasing with increas-
ing R as 1/R correspond to the radiation field.

If only a l/R dependent radiation field is taken into account,

the electric and magnetic fields may be written from Egs. 60 and 61

as l_éi\
_J-
2 1 21 N .
E mm—f[kx(ka)]—ﬁ——dV (62)
'
S
and 'k'ﬁ
A ; A S -JKe
= 4 e T
i I f(ka) = &V (63)
v
S

in which the propagation vector §'= ﬁko is introduced and the unit vector
ﬁ is defined as ﬁyR so that ﬁ'andlﬁ are in the same direction.

The electromagnetic fields given by Egqs. 62 and 63 can be
considered as the random thermal electromagnetic fields since their
source function‘ﬁ is a random, statistical guantity. The power flow
density at the observation point X, may be considered now, with the
aid of the Poynting vector defined in Eq. 45.

The substitution of Egs. 62 and 63 into Eq. 45 yields (see the

appendix for the details)

- k AT KT X7 7 I(x,x))
plw,x,) = = /E\(x ')[ ° J &2 av o, (6L4)

2 2 t
2N V. RZ(x,,x))

where )\ is the free-space wavelength, Z, X, and TO are functions of

the source point coordinate X& and P(xa,x&) is defined by




A
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'y = - n® + - n2 + - n® -
F(xa,xa) (1 nl)lll (1 n2)£22 (1 ns)fs3 2nln2£12

(65)

A
in which n, n, and n_ are the components of the unit vector n along

3

r- , - and g@-coordinate axes, and 111’ 1 1 and £12 are given in

22’ "33
Eq. LO.

It should be observed that Eq. 64 is based on the concept that
the radiation intensity in any solid angle can be treated as energy,
transferable in a bundle of plane, nonextinguishable waves whose
normals are included in the solid angle. In a homogeneous isotropic
medium the direction of the vector of energy flux coincides with the
wave normal®. The unit vector‘§ (xa,x&) indicates the direction of
propagation of the wave originating at the source point x&.

Having determined the time average Poynting vector g(a5xa),
the noise power received from the ionospheric thermal radiation at

the receiving antenna can be obtained by taking a proper surface

oy
integral of p(ayxa) over the aperture of the antennsa AO,

P@) = [Bloxy) -3, (66)
o)
A A A
where ds = nods, with nO being a unit vector normal to the differential
surface area ds.

Since P(w), given by Eq. 66, is nothing but the available noise
power at the receiving antenna in the freguency interval between f and
£+ Af, with the aid of elementary antenna theory, the mean-square
fluctuation of the induced noise voltage < V2 > on the antenna can be

obtained from the following simple relationship:

pla) = S22 (67)

LR ?
r
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where Rr is the radiation resistance of the antenna. Equation 67 is
based on the assumption that the lossless antenna is oriented for
maximum response and the receiving system is designed in such a way
that there is maximum power transfer from the receiving antenna to
its terminal impedance.

On the other hand, the effective antenna temperature, Teff’

can also be determined by the Nyquist formula

Plw) = KT pp OF (68)

in which the receiving antenna is assumed to be in thermal equilibrium
with its surroundings.

In practice, the antenna used for the measurement of ionospheric
thermal radiation is characterized by its directivity Do’ by its
effective area (or meximum effective aperture) Ae, or by its beam
area B, which is the solid angle Qa through which all the power radiated
would stream if the power per unit solid angle equaled the maximum value
of radiation intensity over the beam area.

It is well known from antenna theory that these parameters are

related to each other in the simple manner®Z
2
= A _ by
A = D, and D ol (69)

For example, if the receiving antenna is properly oriented for maximum

response, the available noise power P(w) can be given by
= D 0
P(w) = AB () , (70)

where Eo(w) is the time average Poynting vector at the position of the

receiving antenna, and in the present discussion it must be given by

Eq. 6lk.




.
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In order to determine s&»,xa) from Eg. 64, the source region
VS, which is determined by the beam area of the receiving antenna,
must be specified and the integrand must be expressed as a function
of conveniently chosen coordinate variables. Although the parameter
ZaB was expressed in spherical coordinate variables (r, 6, @) in the
previous section it is not difficult to see that the integration can
conveniently be introduced with respect to the solid angle, subtended
at the observation point instead of carrying out the volume integration
in a spherical coordinate system as in Eq. 64; this is illustrated in
the following discussion.

Suppose that the observation point Xy is taken on the surface
of the earth and the radial component of total noise power received

by the antenna is sought. Then, from Eq. 64,

EI' ((D) XCC) = :—5((1), Xa) . ﬁl (Xa)

Jl r?aq dr (71)

1+ 7z8JR®

[ kT XZ

where di = sinf d6 dp is the differential solid angle subtended at the
origin (the center of the earth) by a source located at X& and QO is
the solid angle subtended by the source region VS at the origin.

If an is the differential solid angle subtended at the obser-
vation point X by the source located at x&, then it is not difficult
to see that with the aid of Fig. 1,

RZ4Q

S = r3%g (72)
@ - w)]

-
where ui(x&) is the radial unit vector at the source point. Consequently,

Eq. 71 can be written as follows:



) I

(a)

(b) Geometrical Relation Between the Source Points X&

and the Observation Points Xoy

FIG. 1 COORDINATE SYSTEM AND DEFINITION OF VARIABLES.
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N k AT kT XZ
p (w,x) = y(xy %) L " Z] rdg éh (73)
where
A A
( g n(xa,gz) . ul(xa) 3 cos ¥ (71)
NACIWD [—\( o ﬁt( ')| cos 17 T

n(x,x} Xy o

and Qa is the solid angle representing the beam area of the receiving
antenna and r = a + h is used in the derivation. The angles Wo and wé
appearing in Eq. 7h are those between 3 and'ﬁ\l and between‘ﬁ and ﬁ;
respectively, and they are related geometrically as is shown in Fig. 1.
If an antenna of sufficiently small beam area is used for
measurement, some approximation can be made in Eq. 73. That is to say,
if Q is sufficiently small, then the unit vector n(xag 9 may be
considered as a constant vector within the solid angle Qa, and may be
replaced.by‘g(xogqa), where q , is the representative source point

lying on the axis of Qa and the factor y given in Eq. 74 becomes

independent of the source point X& also. Therefore, Eq. 75 becomes

h

_ kpt o f l:kToXZ ] _
w,x ) = ) ——— | T an
Boxy) = =05 | | (75)
h
o}

and from Eg. 70, with the aid of Eqs. 69 and 75, the expression for the

available noise power at the receiving antenna is

h
Pr(w) ) kAf / [kT XZ :lf\dh , (-6)

where
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2o (k)
vy o . (77)
n i(qa)
and
T = (1-n%¢ (n)+ (1 - n§)£22(h)
+ (1 - ng)lss(h) -2 nlnzllg(h) . (79)

It is observed that for the case of a vertical incident measurement,
A - - - -
u =u', n =landn =n_, =0, sothat " =14__ + 4 and y = 1.
1 1 b 2 3 o p=¥= 33
Consequently the available thermal noise power at the receiving antenna

per unit bandwidth, Po(f), for the case of vertical incident measure-

ment, may be given by

1

h
o -z [ =] (19)
p(f) = Z —2 | T an . 79
e} 7\.h L__*_ZgJ o)
o]

It is interesting to note that for a special case Y = O (corresponding
to the absence of a geomagnetic field), £22 = £33 = 1 and FO = 2.
Furthermore, if 7% << 1, then Eq. 79 is reduced essentially to the
same form as that used by many workers?»2,3,4,13,14,

Having considered v%(f,x&), the thermal noise power generated
per unit volume per unit bandwidth, and the power flow density (Poyutiug
vector) at the point of observation, the following natural question can
now be asked: How efficiently is the generated thermal noise power in
the ionosphere being converted into thermal electromagnetic wave energy,
received at the detecting antenna on the ground?

One reasonable way to answer this question is as follows. Let

p' be the power flow density observed at the observation point X o
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R k AF rkT X7
3 (0,x) Yy | =] mm@m ()
where
a oL
ex) - n(xa,xa) ul(xa) _ cos ¥ (71)
THata Rlx,x) - w(x)] %Yo !
o’ Qo

and Qa is the solid angle representing the beam area of the receiving
antenna and r = a + h is used in the derivation. The angles Wo and Wé
appearing in Eq. ?h are those between 3 and'lJl\l and between ﬁ and ﬁ;
respectively, and they are related geometrically as is shown in Fig. 1.
If an antenna of sufficiently small beam area is used for
measurement, some approximation can be made in Eg. 75. That is to say,
if o is sufficiently small, then the unit vector<ﬁ(x0?x&) may be
considered as a constant vector within the solid angle Qa’ and may be

replaced by';(x ), where q,, is the representative source point

o'la
lying on the axis of Qa and the factor y given in Eq. 74 becomes

independent of the source point x& also. Therefore, Eg. 75 becomes

\ {fﬂ%—z—-}? dh (75)

h
3 KAE
p(w, Xy = 0y ]

and from Eq. 70, with the aid of Eqs. 69 and 75, the expression for the

available noise power at the receiving antenna is

h
K AF KT XZ 7 _
P (@) - / L }rdh , (76)
¥ 1+ 22

where
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2T ()
Vo= = o (77)
N _)'
n ul(qa)
and
T = (1- Ef)zll(h) + (1 -Ez)zZZ(h)
+ (1 -1, (h) -2 nln2112(h) . (70)

It is observed that for the case of a vertical incident measurement,
A — _ — — —
= ! = = = = - = .
U U, n 1 and n2 ng 0, so that PO 122 185 and y 1
Consequently the avallable thermal noise power at the receiving antenna

per unit bandwidth, Po(f>, for the case of vertical incident measure-

ment, may be given by

h
1

KT X7
[ o

JFdh . (79)
1+ z2d °

ho

It is interesting to note that for a special case Y = O (corresponding
to the absence of a geomagnetic field), £22 =gy, = 1 and Tb = 2.
Furthermore, if 72 << 1, then Eg. 79 is reduced essentially to the
same form as that used by many workersls2,3,4,18,14,

Having considered vg(f,x&), the thermal noise power generated
per unit volume per unit bandwidth, and the power flow density (royuting
vector) at the point of observation, the following natural question can
now be asked: How efficiently is the generated thermal noise power in
the lonosphere being converted into thermal electromagnetic wave energy,
received at the detecting antenna on the ground?

One reasonable way to answer this question is as follows. Let

p' be the power flow density observed at the observation point Xop




-27-

per unit bandwidth in the case of a vertical incidence due to the sources
occupying a unit volume, located in the neighborhood of x&. By taking VS

to be a unit volume in Eq. 64, with the aid of Eq. 65, p' can be given as

k_ [k XZ 1t L,
o =2 2| () ()
a2 b1+ g2 R?

On the other hand, let p" be the power flow density which would be

expected at X if an equivalent point source, radiating isotropically
with the power wo(f, x&), were placed at x). With the aid of Eg. 50, p"

can be expressed as

t — 2 +
. wo(f,xa) 1 [KTZ R A
o= =22 = = . (81)
LnR® L R2

Then by examining the ratio n = (p'/p"), given by

1 l 3 ! + l
= p_ = 9 _)S 22 33 (82)
TP 2n \ C 2/ T+ 11 ’

33

where ¢ is the speed of light in vacuum, the desired information should
be obtainable.

It should be pointed out that 1 can be considered as the
efficiency of conversion as long as it has a value less than unity. How-
ever, for a certain frequency range, particularly in the microwave range,
it is possible that 7 may be greater than unity, in which case 7 must be
looked upon as the directivity of a nonisotropic radiating system located

in the ionosphere rather than as the efficiency of conversion.

V. PARTICULAR CASES

It is not difficult to see thet when z% << 1, say z < 1/10,

considerable simplification results in the evaluations of the various
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quantities discussed in the previous sections, such as wo(f,x'),

04
W(f,VS), 5%(ayxa), Po(f) and n. As an illustration, the following

special cases are considered here:

Case I: 72 < 1 1 << G6®
Case II: 72 < 1, 3G° < 1 ,
Case III: hz2 < 1, 3 << 6%,
Case IV: h 72 << 1, h@g® << 1 . (83)

For convenience, the subscripts 1, 2, 3 and 4 are introduced in the
quantities W, PO, Wy and n to indicate the fact that Cases I, II, III
and IV are being considered, e.g., Wl denotes that W for Case T is
being considered, etc.

When 72 << 1, the factor ©(Z,u) given in Eq. 53 is reduced to
a much simpler form so that the integration of © appearing in Eq. 52
can be carried out without the aid of any numerical method as shown

in the appendix. Consequently, Eq. 51 becomes

r
1
= (e - 2,2 _ +
w(f,vs) (@l ¢b) \jf kT_Z50 (cos 6, - cos 6, 210) dr
I.O
(8L)
where
u
O
- 2
Io(90’91> \/p 6(z% << 1,u) du (85)
u
1
with
u = cos 6 and u = cos 6
[e] (@] 1 1

Suppose that the amount of radiation from a layer, i.e., a region

consisting of a spherical shell of thickness Ah, is to be determined;
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then ¢ =0, ¢ =2r, 6 =0, 6 =x, r =r *Ahandr =a+*h

can be taken. If Ah is sufficiently small so that To and Z can be

considered invariant with respect to h over Ah, then from

Eq. 84,
Wl(f,h) = V_kT_(h) zf(h,f) (86)
and
Wz(f,h) = BVOkTO(h) zg(h,f) ; (87)
where
V- E ) =2 (88)

On the other hand, if 4 72 << 1, say 2 Z < l/lO, then Eg. 79 becomes

h_+Ah
_ b1
Po(f) = = f KT_XZ t(6,h) dn (89)
h
o)
where
te(6,h) = T“o (b 722 << 1,h) . (90)

Once again, if Ah is sufficiently small, Eq. 89 gives

_ Ah
Pos(f) = go(e,ho) KT X Z_ (X;) X (91)
and
_ Ah
P, (£) = 2T X7 X:) T, (92)
where

2 i
e (o) = —22G800 o 5 o« 2, (93)
G2 (1 + 3 cos®)

Similarly. it is not difficult to see that Eg. 50 gives the following

expressions, with the aid of Eg. 40:
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_ 2
v (£,0) = KT27 (9k)

and

w  (£.0) = 3T 22, (95)

while Eq. 82 gives

w2 (80 (2)(F) e 5%
- a8 (2)(2) 8 o

Before discussing the significance of the above obtained simplified

and

results, it should be noted that the factor G(w,r) given in Eq. 19 can
be approximated in the following manner. Since the radius of the
earth a is approximately 6370 km and the magnetization8 Mis O.955/Mn
amp/m2 for 1945 for an altitude h (with r = a + h) up to about 200 km,

the ratio h/a is much smaller than unity so that

olo,r) ~ £ X1 108[ 5( )] (98)

This suggests that for a height up to about 200 km, G = v(o = ﬂ/2) is
practically invariant with respect to h. On the other hand, the
collision frequency v(h) varies considerably with the height h in this
same range of height'®. For example, when h equals 50, 70, 80, 85,
90, 100 and 150 km, v takes on values of 100, 20, 2, 0.65, 0.2, 0.05
and 0.001 mc per second respectively, and above 150 kv v varies very
little. Consequently, the condition (v/o.‘»b)2 << 1 occurs in the range
of height up to about 200 km. As for the electron density No(h) and
the plasma frequency wp(h), at h = 80 km, N = 3 x 10% per m° and

a& = 1me; at h = 90 km, No =3 x 10*° per m® and a§ = 10 me.
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Furthermore it should be noted that since Z(h,f) is defined
as v(h)/w, the range of radiation frequency in which the condition
z2(h,f) << 1, say Z(h) < 1/10, is satisfied depends upon the height
h. For example, it is 3.1k mc < f at h = 80 km and 0.31k me < f at
h = 90 km. Whereas the condition 1 << G%, say 10 < G, is satisfied
when £ < 70 mc and the condition 3 GZ << 1 is satisfied when 12 kme
< f for the range of height up to about 200 km, since G is practi-
cally constant.

Since Cases III and IV are subcases of I and II respectively,
the attention is focused here on Cases III and IV. That is to say
the remarks made on Case IIT apply to Case I as well, and similarly,
the remarks on Case IV can be applied to Case II.

In the region of the ionosphere between 85 km and 200 km the

frequency ranges specified by Cases III and IV now can be given as

follows:

Case III (and Case I): 1.6 me < f <U2me
[r-f noise]

Case IV (and Case II): 14 kme < f

[microwave noise]

Having established the correspondence between the ranges of parameters
Z and G, and the ranges of height and radiation freguency, some mean-
ingful interpretations can be given to the simplified results obtained
earlier.

Equation 91 suggests that the r-f noise power available at the
antenna Pos(f) depends upon the polar angle 6 through the function
go(e) given in Eq. 93, which has been plotted and shown in Fig. 2.

Since go(e) increases with 6 from go(O) =1/(2G®)<< 1 to go(n/E) =1,



£, (8)

_52_

1.0 —
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0.4
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FIG. 2 THE FUNCTION go(e), DEFINED BY EQ. 93, VERSUS THE

THE POLAR ANGLE 6.
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it can be said that the power level of r-f noise signal received

at the antenna is lower in the polar cap zone (6 = O) and is higher

in the equatorial zone (6 = n/E). On the other hand, Eg. 92 suggests
that the microwave noise power received does not depend upon the polar
angle 6.

Equation 96 suggests that the efficiency of conversion, defined
in Section IV, for the r-f noise does depend upon the polar angle 6
and also upon the function gb(e). It implies that the efficiency is
lower in the region near the polar cap (6 = O) and is higher in the
equatorial zone (6 =~ x/2). This, in turn, can be interpreted as
follows: there is a larger fraction of the generated r-f noise power
in the ionosphere at a given height, stored in the quasi-stationary
fields in the region near the sources, in the polar cap region than
in the equatorial zone.

However, Eg. 97 suggests that no such polar angle dependence
exists for the microwave noise. For example, at h = 90 km, since
(wp/c) ~ 0.03 and (wp/v) =50, 7, = 0.057 go(e) and 1, = 0.38, which
implies that about 38 percent of the microwave noise generated at
90 km in height reaches the receiving antenna whereas, at most, only
about 6 percent of the r-f noise generated at the same height reaches

the antenna.

VI. CONCLUSIONS

The attention has been focused in the present study on the
effect of colliding electrons under the assumption that the effect
of the motion of ions in the region of the ionosphere of interest

is negligible.
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The general expressions derived for w(f,VS), the thermal
noise power generated per unit bandwidth from any given source
region V of the ionosphere, and for Po(f), the available thermal
power per unit bandwidth received at the detecting antenna due to
the radiation from VS, are valid for all frequency ranges and for
most regions of interest in the ionosphere, i.e., where the electron
collision process plays a major role. Once VS is specified, the
profiles of To(h), No(h) and v(h) obtained from the experimental

16,17,18,19,20,21 -4 phe used for the evaluation of

observations
W(f,VS) and Po(f)- Thus the detailed information with regard to
the spectral distribution of the thermal energy radiated from the
ionosphere can be obtained with the aid of a numerical integration
of the expressions derived in the present report. However, it has
been demonstrated in Section V that several interesting conclusions
can be drawn from even a simple consideration of some special cases.
It is suggested by Eg. 96 that a larger fraction of the r-f
thermal noise power generated at a given height in the ionosphere
can be converted into r-f thermal noise signals which can reach
the receiving antenna in the equatorial zone (6 =~ n/Z) than in the
polar cap zone (6 = 0). 1In other words, a smaller fraction of the
generated energy can be stored in the region near the source in
the equatorial zone than in the polar cap zone. It should be noted
that this theoretical observation does not contradict the experi-
mentallyla’l4 observed fact, in the ionospheric radio wave absorption
measurement, that absorption is higher in the polar cap zone than in
the equatorial zone.
It is of interest to note that, as suggested by Eq. 91, the

r-f noise power available at the receiving antenna does depend upon




-35-

the geographical location of the detecting antenna and that the power
level is higher in the equatorial zone than in the polar cap zone.

It is indeed desirable that the present theory be tested and
verified with some sort of experimental observation, e.g., a labora-
tory experiment. In other words, if the ionospheric plasma condition
can be realistically represented with a laboratory experiment, then
it will permit a study of the characteristics of thermal radiation
in great detail and a test of the soundness of the present theory.

It should be pointed out that the present analysis may not be
as rigorous as a microscopic treatment using the Boltzmann transport
equation with the proper collision integral. However, this method
of analysis does offer a simple and direct way of analyzing the
thermal radiation from an anisotropic ionized medium and it radiation

characteristics.
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APPENDIX A

DERIVATION OF VARIOUS EQUATICNS

1. Derivation of Eg. 39

Since ia is defined as

p

~ _ ~ o~ - _ >—~ ~' ~_ N* .
LOéB = 2 LG@B + oga“! = 2 !ND ca5+ D* CBOJ s (A.1)

where the symbol ~ denotes the complex quantity, by letting D = CO + do

and Ca = a

+ i . .
B ap JbaB in Eq. A.1

T = 2 [{co(a + a

(075) ap Boc> - do(baB " bﬁoc)]

+ {do(aaB - aBOt) + Co(baa - bsa)”

(A.2)
On the other hand, D is given by Eq. 22, and its real part , and

imaginary part do are given by

we_X7 (z2 + Y2 - 3)

© (1 + 23 q
and
weOX (l - 522 - Y2)
d, = , (2.3)
(1+ 2% q
where
Q = (Y2+ 272 - 1)+ L g2

iaB can be arranged into the following convenient form:

~

L = uweo(xz/l + 2%8) [1

0B ap T Mgl s B = 1,2, 3, (A.L)

-36-
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where

by = 25 L1+ ¥2 - 3) (age+ a )= (0 - 322 - ¥)(oyp + b))
(A.5)

and

L Elbj [(1/z){(1 - 322 - 1'2)(%B - aﬁa)}

+ {(z2+ Y% - 3)(p N1, (a.6)

-b
op po
where a o and by, for @ and p =1, 2, 3 are given in Eg. 24, Upon

ap p

substituting 208 and b, into Egs. A.5 and A.6, Eq. 40 is obtained.

B

2. Derivation of Eg. 19
Since the tensor (or matrix) {7055}’ given by Eq. 20, can be

expressed as the sum of a symmetric tensor (or matrix) {SaB} and an

}

antisymmetric tensor (or matrix) (T

ap
{7(13} = {SaB} + {TaB} , a,B = 1, 2, 3 , (A7)
where
0 0
04 0 0 713
= = 0 0
(saB} 0 y 0 and {Taa} 7 o
o 0 \ Y, Y2z ©
with
. Z*+ ] _ G sin @ _ -~ 2Gcos 6
7 T mex 7 7Tia oe x and 7 o we_ X ? (4.8)

it follows that
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Z+ j
we X
o)

_ + + - * * X
K = K SK+K TK [k KT+ K, K, + K, K]

1=
=
1R
=

+ * _ *) 4 * _ * . .
(. (Kl K, - K, KJ) 7 pa (x] X, - K, K)) (4.9)

By noting that the guantity inside the curly bracket appearing on the
right-hand side of Eq. A.9 is purely imaginary, since 713 and 75 are
3

real,

1 + Z * * *
= = 2 + + . s
5 Re [K vy K] 5 eoX [Kl Kl K2 Kg K8 Ka] (A lO)

2+ Derivation of Eg. 51

For convenience, let L te defined as

= + + *
L N S (A.11)

then it is not difficult to show with the aid of Eq. 4O that

L= 1+21,, , (A.12)

where ZSS(Y,Z) is given in Eq. 40. Since only the parameter Y depends

upon 8, in order to facilitate the integration with respect to 9, 1/

33
can be expressed conveniently as
1..(v,2) = (28+1) e (v,2) , (£.13)
where
e(y,z) = 1+z ") (a.1k)

vt + 2(2% - 1) Y2+ (28 + 1)2
The volume integration of wo(f,;), given by BEq. 50 with the aid of
Egs. A.12 and A.13, yields Eg. 51. The substitution of Eq. 23 into

A.1h, with u = cos 6, gives Egs. 53 and 5.
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| &=

Derivation of Egs. 60 and 61

From Egs. 57 and 58

Y 1 S D
E = ——— (V- 3) - jwA
J LK, &
The fact that
. . - jk R
(37 - R
= - - s
R ) R2 R R
yields
A M N - Jk R
V.a = 2 Kv(-l-e °>dv'
10 R
v
s
- jk R
-H Jk o
0 1 o e
= . —_ t
T f (? ﬁ) [RZ RJ B av
\'
s
and
) N Jk
v(v A) = ° f ’}? _'i -
b R2 R
\
S
. - Jk R
J2k kZ o
+qz.§>§{z . o-.e}}s__dv'
L g2 RS R2 R
The substitution of Egs. 55 and A.16 into Eq. A.5 gives
2 1 1 S o jko 1
E S 3o Im Kiky - & - =
Jw e, \ o RZ

S

k® 3k
- (ﬁ-'ﬁ)ﬁ«f—o-——o-—i}]e——R—dV'

(a.15)

(A.16)

(A.17)
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On the other hand, from Egs. 55 and 59
—Jk R

Y _ 1 '
H-H /VX( dV

-Jk R

S5k o
1 = 2 0 1 Je .
I \/p (K x R) [ =— + ;; ] —— ' . (A.18)

5. Derivation of Egq. 6l

If only the l/R dependent radiation field is taken into account,

from Egs. A.17 and A.18 the following can be derived:

2
-ik' + R
2 1 o B () x BT e L
E(x,) o In k/ [k' = {K' (x}) x k'}] Rx_ %)) av (A.19)
and
-AH AH
N N -Jjk° - R
H( ﬁL u/ ") x k") QETC:—;ﬁT av* (A.20)
v, oo
S Y A, A A, .
where k’ =n' k and k" = n" ko’ with n' and n" being the unit vectors

directed from the source points xa and x to the point of observation
X respectively. The quantities with a prime denote those associated
with a source located at the point x& and those with double primes
denote association with a source at the point x&.

Then, from Egs. 19 and 20, the complex Poynting vector can be

given as follows:




o

1 = .L*
3 [E(xa) x H (Xa)]
N N
K2 /u"/e jko(ﬁ" . ﬁ\" - n' - R")
_ o o o 2 . _ny € , "
2 u/\u/\ M(x, %), %0) = av' av"
VvV Vv
(A.21)
where
> A S N
M(Xa,x('x,x(';) = [®*xn"]x [ x (K x n')] . (a.22)

With the aid of the vector algebraic identities, it is not difficult to

S
show that M is expressible as
N AN A Y
Moo= (- X))@ - )RS (K- B
Y AN S AN D
@ GE)E R ® R . (a.23)

It should be noted that each term on the right-hand side of Eq. A.23
contains a factor of the form (K& Kg*) with a,f = 1, 2, 3. It has
been pointed out in connection with Eq. 56 that since K& contains the
. . 1 ] . "
Dirac delta function of the form 8(xa - Xa) and K contains 6(xa - Xa)’
1 11 . . 1 1" . . .
(Ka Kﬁ) is proportional to 8(xa xa) 6(xa - xa). This is consistent

with the discussion given in Section III with respect to the spatial

A A A
correlation of the source current. Consequently, x' = x", n' =n" =n

[0 o
and R' = R" = R(xa,x&) can be set in the integral of Eq. A.21, with

the result
1 2 N k2 Vi /e N M (x_,x')
1 X _ (o) o o . o .
[BE(x.) x H¥(x )] n(x_,x') ———— av' ,
2 [04 04 2 2 Qo 2 '
(4x) v R (Xa’xa)
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where
M (x,x') = K(x') KYx') - [alx.,x') » K(x)IEGx,x) - B*(x')]
o o’ (04 (01 o’ o a o’ o o
(A.25)
By letting
AN 2 + 2D + S
no= ou 0, Tu,n, U, n,
and
A B AN + AN K + D X ( 26)
K = ul Kl u2 5 u, Ky A.
M  becomes
o)
- _ pn2 *7 4+ - 2 *7 + _ 2 *
M, (1 nl)[Kl Kl] (1 n2) [K2 K2] (1 ns)[KS Ks]

-n n [K K +K* K]-n n [K KX+KK]-n nl[K K'+K*k ],
1 2 12 1 2 1 3 1 3 1 3 2 8 2 3 3 2

(a.27)

which can also be conveniently written in matrix notation as

M = K

8 K , (A.28)

o

where K is a column matrix, K" a row matrix and fi is a square real

symmetric matrix whose elements are given by

QaB = (5

where SGB is the usual Kronecker delta.

Now, with the aid of Eq. 38, from A.27,
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which can be further written with the aid of Eqs. 39 and 40 as

/
<M > = owe (X2

TALT A.31
o avg °O\] 4 »2 ? (a.51)

where
1] - ( - 2 + - 2
I‘(xa,xa) [ 1 nl> 111 < 1-n] >£22

*-( 1-n2 > { _ -2n n 4 J . (a.32)
3 33 1 2 12

KN
In view of the fact that < Mb > ave = (1/2) Re (Mo), and n and R are

real, the time average Poynting vector g(xa) can be given from Egs. A.2k

and A.31 es
Y 2 2 Dy
p(x,) = 5 Re [Ex HY]
Kk AfF T on(x.,x')
. Do f n(x ,x') ,{TXZJ’ &Ly (4.33)
2 L] + p2d o2 '
2a® o 1+ 257 R¥(x,,x))

where A is the free space wavelength, Z, X and 7 = k To" with TO being
the electron temperature in the source region, are the functions of X(')f

and ko = 2n/\ is used.

6. Evaluation of the Integral Io(eo,el) Defined in Eg. 85

Note that I (6 ,6 ) is defined as
(o] (@) 1
u
(o}
I(Q ,9) = f 9(22 << l,u) du ;3 u = cos 8 and u = cos b
oo’ 1 o} o 1 1

u
1

(A.34)
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when 272 << 1, 6(Z,u) given by Eq. 53 is reduced to the following form:

eo(u) = 9(2% << 1,u)

_ 1 1 L2 1

30% (W +ad) (3 G322 (u® + a?)®

where
a = et . (A'55)

Then the integral IO can be evaluated readily with the aid of a
standard table of integrals®Z.

Case 1

1 <G <O < a§> [using 120.1 and 120.2 of Reference 22]

I (6.,8) = 1 L g—G—24'tan—l<29> —tan_l(il.\l
00’1 2 2 Loa . a_ N /J
(3 6% (6% - 1)t % o o
u w
S
w2 + a2 u2 + g2
O [@]
Case g

G<1 ; <a2<0> or <b2 = —a2>0\-'
(@] O @] e

[using 140.1 and 140.2 of Reference 22]

+ _ -
I(6,0) = —21 1 [Gz log{ Py TP ul}
’ - +
o O 1 (5 G2) (l _ G2) 2bo bO uo bO ul
u u o
+ 0 _ 1 J ,
Lp2 - w8 p2 - w2/
o o 1
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where
2 (1 - G2 .
P . (a.37)
3G
Case 2
G =1 3 a =0
o)
from A.35, so that
1 1 21
6 (u) = z=+5—
o] 3 2 9 ut
and
= i/ L 21 2(L_1
Io 3 <ul_ ug > * 27(\u W3 > (a.38)
o

provided that the interval (uo,ul) does not contain the point u = O,

i.e., 8 = /2. It should be noted that when 1 << G%, Eq. A.36 can

be simplified by letting aZ = 1/3. Similarly, when ¢% << 1, bi = 1/(3G%)

can be used in Eq. A.37.
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